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global grid. There are various technologies for hydrogen production, including biological and photo-catalytic
methods. This review paper discusses these technologies, their aspects, challenges and potential
advancements. The reviewed work indicates that current biological hydrogen technologies generally have
lower yields and conversion efficiencies and are only applicable to a minority of biomass materials. However,

they are sustainable, environmentally friendly and operate at low temperatures. Similarly, photo-catalytic
hydrogen technology is also environmentally friendly and sustainable, using natural sunlight and water to
generate hydrogen with minimal greenhouse gas emissions. Nevertheless, its efficiency is still lower than
other methods such as steam methane reforming and electrochemical electrolysis of water.
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1. INTRODUCTION

A 2021 report by the International Energy Agency has highlighted the
alarming levels of global energy and CO2 emissions, which have become a
major concern due to the unprecedented levels of greenhouse gas
emissions. The main cause of this worrying trend is the burning of fossil
fuels for energy production, leading to the release of harmful gases such
as €02, CO, SO2, NOx and ozone, as well as pollutants like lead, soot and
ash (IEA, 2021). Complicating the situation further is the depletion of fossil
fuels and the projected 50% increase in global energy demand by 2040,
driven by population growth and industrialization in developing regions
like Asia and South America, as highlighted in a 2014 IEA report (IEA,
2014). Consequently, addressing an impending energy crisis and
preventing environmental pollution has become an urgent priority.
Therefore, there is an urgent need to find a clean, renewable, cost-effective
and sustainable energy source as an alternative to fossil fuels.

Hydrogen has become a focal point as a renewable and eco-friendly energy
carrier. Its ability to decarbonize the energy sector by offering carbon-free
fuel flexibility and energy storage for the global grid has attracted
significant attention (Zainal, et al,, 2024). Various methods and processes
are employed to produce hydrogen gas from different sources, collectively
known as hydrogen production technologies. These technologies
encompass  biological production, photo-catalytic = production,
thermochemical production and electrochemical production. Biological
production involves the use of microorganisms or their enzymes to
generate hydrogen from various organic substrates through biological
processes (Pal, et al., 2022). Generally, biological processes for hydrogen
production are considered more environmentally friendly and sustainable
compared to electrochemical and thermochemical processes (Zhang, et al.,
2024). Photo-catalytic production involves the use of semiconductor
photo-catalyst(s) (Ishaq, etal., 2021) to split water or other substrates into
hydrogen, as a clean energy carrier (Hassan, et al, 2023), and oxygen
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under the influence of sunlight (Luo, et al, 2021). Photo-catalytic
processes are also environmentally benign and sustainable, although
some greenhouse gas emissions are also generated (Hassan, et al., 2023;
Zhang, et al,, 2024). Electrochemical production, on the other hand, uses
electricity to drive chemical reactions that result in hydrogen production
(Dotan, et al, 2019). Water electrolysis is commonly employed in
electrochemical hydrogen production technologies (Anwar, et al,, 2021).
Electrochemical processes mainly rely on electrolysis technologies such as
alkaline electrolysis, anion exchange membrane, proton exchange
membrane, solid oxide electrolysis and bipolar membrane electrolysis.
This method is considered environmentally friendly and sustainable for
large-scale hydrogen production (Zhang, et al,, 2024). Thermochemical
production involves high-temperature chemical reactions to produce
hydrogen from various feedstocks (Guban, et al,, 2019). Among the main
thermochemical processes for producing hydrogen are steam methane
reforming, partial oxidation, auto-thermal reforming, dry reforming and
gasification of coal and biomass. Generally, thermochemical methods are
broadly used for large-scale hydrogen production, through steam methane
reforming; in particular (Zhang, et al,, 2024).

This paper specifically examines the biological and photo-catalytic
technologies used for hydrogen production, delving into their distinct
characteristics, obstacles and potential advancements.

2. TECHNOLOGIES OF HYDROGEN PRODUCTION
2.1 Hydrogen Via Biological Technology

Biological processes for hydrogen production involve the use of enzymes
or living microorganisms to convert organic substrates into hydrogen
through metabolic processes (Pal, et al,, 2022). These methods are often
considered more environmentally-friendly and sustainable compared to
thermochemical and electrochemical processes (Zhang, et al,, 2024). By
utilizing waste materials or sunlight, biological hydrogen production
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results in lower levels of greenhouse gas emissions and typically operates
at low temperatures, reducing energy requirements for hydrogen
generation (Zhou, et al,, 2020). The benefits of biological processes in
hydrogen production are numerous. By converting organic waste into
hydrogen, these methods can contribute to the renewable energy mix
(Gautam, et al., 2023). Hydrogen produced through biological processes
has various applications in agriculture, such as generating power and
producing bio-fertilizers and biofuels (Huber, et al, 2006; Singh, et al,,
2018; Sharma, et al, 2020). Approximately 50% of hydrogen use in
agriculture is for the production of ammonia-based fertilizers (Ball and
Weeda, 2015). Currently, biological processes for hydrogen production
include dark fermentation and photo-fermentation.

Dark fermentation, or more accurately, dark heterotrophic fermentation
(light-free), is a process used for hydrogen production. Various organic
materials such as wastewater, organic waste, lignocellulosic biomass and
carbohydrates can be used as organic substrates (Lukajtis, et al., 2018,
Zhang, et al, 2019; Arun, et al, 2022). The selected substrate should
contain a high amount of fermentable elements, such as sugars and organic
acids. In some cases, pretreatment may be necessary to convert complex
organic compounds into simpler molecules that are easier to ferment
(Kucharska, et al.,, 2020). Pretreatment techniques can involve enzymatic,
physical or chemical processes, depending on the substrate selected for
the fermentation process (Zhang, et al, 2024). Out of this fermentation
process, hydrogen can be produced by introducing an anaerobic microbial
culture, composed of mixed bacteria at temperatures between 25 and 80
°C or higher as required according to the strains used, into a bioreactor
with the substrate (Kapdan and Kargi,2006; Argun, et al,, 2009). The
organic compounds are then broken down by the microorganisms in an
anaerobic environment to be compatible with that of the microbial culture
(Rasheed, et al.,, 2021). This involves a number of complicated biochemical
events; the targeted microalgae or bacteria produces gaseous hydrogen in
multiple phases of hydrolysis. The first phase involves the enzymatic
hydrolysis of organics with high molecular weight into water-soluble
organics. In the second phase of hydrolysis, simpler organics are
hydrolyzed into volatile fatty acids, COz and gaseous hydrogen along with
some biomass and residues of fermentation products (Kapdan and Kargi,
2006; Argun, et al, 2009). In order to purify the produced gaseous
hydrogen from CO: gas and other liquid byproducts, gas sparging and
membrane separation or adsorption techniques should be used;
respectively, ready for compression/liquefaction for storage/liquid
transportation, as desired. Whereas biomass and remaining fermentation
products are either disposed of or processed further for energy recovery
or nutrient recycling, depending on the process design and environmental
regulations (Rasheed, et al.,, 2021). The reactions that describe hydrogen
generation through dark fermentation are as following (Argun, et al,,
2009):

CeH1206 = 2H2 + CH3CH2CH2COOH + 2CO;
CeH1206 + 2H20 — 4H: + 2CH3COOH + 2CO2
CeH1206 + 4H20 — 8Hz + CH3COOH + 4CO2
CeH1206 + 6H20 — 12 Hz + 6CO;

Also in this regard, another biological process for hydrogen production is
photo-fermentation. Opposite to dark fermentation process, photo-
fermentation does not work if there is no sun light or an artificial source
of light (Zagrodnik and Laniecki, 2015; Sagir, et al, 2017; Zhang, et al,,
2024). It depends on the metabolic conversion of organic molecules to bio-
hydrogen through photosynthetic of several bacterial species (Zagrodnik
and Laniecki, 2015; Sagir et al., 2017). For a photo-fermentation process,
those volatile fatty acids produced from a dark fermentation process as
byproducts or from other anaerobic process(es) can be utilized as organic
substrates (Mishra, et al., 2019). Out of this photo-fermentation process,
hydrogen can be produced by inoculating photo-synthetic bacteria, e.g.,
purple non-sulfur bacteria, into an illuminated bioreactor containing the
substrate (Chen, et al,, 2023; Zhang et al.,, 2024). Either natural or artificial
light sources must be used to illuminate the bioreactor in order to provide
the necessary energy for hydrogen photo-synthesis. Out of this, with the
aid of anaerobic and light conditions, gaseous hydrogen is produced, in
addition to, some CO2 with some other gases and liquids. In order to purify
the produced gaseous hydrogen from CO2 gas and other liquid byproducts,
similar techniques to those used in dark fermentation should be used,
rendering hydrogen ready for compression/liquefaction for
storage/liquid transportation, as desired (Zhang, et al., 2024). Photo-
fermentation can be completed in one or two steps. Although the photo-
fermentation with one step is cheaper than two steps photo-fermentation,
it; however, suffers from high energy consumption, as well as limited solar
energy conversion. In the two steps photo-fermentation, in an effort to
generate more hydrogen, photo-fermentation is carried out after a dark

fermentation. The two steps photo-fermentation process is
disadvantageous due to complicated operation due to different bacteria
and operational parameters involved among the different phases
(Zagrodnik and Laniecki, 2015; Sagir et al., 2017). Thus, both photo-
fermentation processes are less commercially competitive than other
biological processes for hydrogen generation (Azwar, et al, 2014). The
chemical reaction of applying photo-fermentation on glucose, as a model
substrate, is shown in following equation (Hallenbeck and Liu, 2016):

CeH1206 + 6H20— 12 Hz + 6CO2

Recent research and development have focused on exploring cutting-edge
biological technologies for the production of hydrogen. By utilizing these
advanced biological methods to generate hydrogen from organic
materials, there is potential to significantly improve the efficiency,
environmental sustainability, and cost-effectiveness of hydrogen
production through this approach (Zhang, et al, 2024). For instance,
microorganisms, e.g., microalgae/cyanobacteria, due to their capability to
produce hydrogen via oxygenic photosynthesis and nitrogenase enzyme
activity can be converted into bio-hydrogen (also referred to as blue-green
algae) through a direct/an-indirect biophotolysis process that uses the
sun light or a controlled light to influence the microbial system by which
water is disassociated into hydrogen and oxygen at a ratio of 2:1 with no
CO: or any intermediary metabolic-producing events compared to dark
fermentation (Kosourov, et al,, 2017; Lam, et al,, 2019; Veeravallj, et al,,
2019; Kamshybayeva et al., 2023). The cyanobacterial strain is grown in a
photobioreactor or open pond system with carefully regulated light,
temperature, and nutrient levels to enhance growth and hydrogen
production (Sadvakasova, et al,, 2020). By inducing nitrogen depletion or
other stressors, the activity of the nitrogenase enzyme is stimulated,
resulting in the production of hydrogen within the cyanobacteria (Zhang,
et al,, 2024). Furthermore, the biophotolysis of water by organisms such
as cyanobacteria and green microalgae could produce a clean and
sustainable energy and based on a renewable source. Also, among the
advantageous of this process is that it only uses the sunlight and CO: as a
source of energy to generate hydrogen by the hydrogenase enzyme
process via bacteria and algae (Ghirardi, et al, 2000). Moreover,
biophotolysis processes require no substrate as nutrients where water is
the main donor of electrons to generate hydrogen. The direct
biophotolysis process illustrated in Figure (1) advances according to the
following two reactions (Show, et al,, 2018).

2H20- 4H*+ 4e+ 0:
4H*+ 4e— 2H:

Another enhanced biological technology for hydrogen production is the
bio-electrochemical systems which also use organic materials including
biomass or wastewater as substrates (Sharma, et al., 2023). Electro-active
microorganisms are introduced into a bioreactor fitted with an anode and
a cathode, separated by an ion exchange membrane. These electro-active
microorganisms could oxidize organic substrates at the anode, producing
electrons and protons. The electrons travel through an external circuit,
while the protons penetrate through the ion exchange membrane to the
cathode, where they are converted into gaseous hydrogen (Al-Mamun, et
al, 2023). Furthermore, another advanced biological technology for
hydrogen production is the microbial consortia which are utilized to
increase hydrogen production by using organic materials, e.g,
wastewater, organic waste, lignocellulosic biomass and carbohydrates as
substrates (Tomasini, et al, 2023). These consortia are added to a
bioreactor with the substrate, where they break down the organic
compounds and generate hydrogen gas, as well as some other by-products
(Joshi, et al,, 2023). Both engineered and naturally occurring microbial
consortia, consisting of various types of bacteria and other
microorganisms, are designed to improve rates of hydrogen production,
yields and substrate utilization (Ergal, et al., 2022).

Furthermore, hydrogen can be generated via a bio-catalyzed electrolysis
process. In this process, various dissolved organic compounds can be
efficiently converted into wastewater via electrochemically active
microorganisms that can generate an electrical current (biological anode)
once the organic compound is oxidized. Connecting this anode to a cathode
through a power supply results in reducing the protons, generating
hydrogen. There are two basic types of bio-catalysis electrolysis-based
bio-electrochemical systems which are microbial fuel cells and microbial
electrolysis cells. The first system uses cathodes open to air, produces
electricity and reduces air (Logan, et al, 2006). However, in the second
system, an external power input is required to improve hydrogen
generation at the cathode (Rozendal, et al., 2006). Green hydrogen can also
be generated out of a bio-electrochemical system that uses
microorganisms as catalysts to electrochemical reactions from various
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substrates at the cathode and anode, to which heterotrophic bacteria is
attached (Logan, etal., 2008; Lee et al,, 2010; McCormick et al., 2013). This
bacteria oxidizes the organic matter, found; for instance, in wastewater
treatment facilities and food processing plants, to generate protons and
electrons at the anode. Then, electrons are transferred to the cathode,
while protons are reduced into hydrogen. To this end, this system

generates a green hydrogen and also could reduce waste streams. Bio-
catalytically electrolysis of acetate using the second system, where only
0.14 v is required (Zainal, et al., 2024), is shown by the following chemical
reaction equation (Zohrer, et al,, 2014).

CH5COO- + 4H20 — 2 HCO3~ + H* + 4H:
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Figure 1: A Flow Diagram of Hydrogen Production via Biophotolysis (Show, et al., 2018).

In addition to the above discussed biological processes, biological water
gas shift reactions can also be a route for hydrogen production. Although,
unless the heterotrophic-bacteria, of carboxydotrophic hydrogenogens of
the  Rhodospirillaceae  family, = Rhodospirillum  rubrum or
Carboxydothermus hydrogenoformans, is capable to use CO as a carbon
source, a biological water gas shift reaction might not take place (Hosseini
et al, 2015; Alfano and Cavazza, 2018; Veeravalli et al, 2019). The
biological water gas shift reaction relies on the capability of these
microbes in the dark to generate hydrogen accompanied by CO2 through
oxidizing CO and reducing water as indicated in the following equation of
chemical reaction (Tanksale, et al, 2010). Biological water gas shift
reactions are better than thermochemical water gas shift reactions as the
former requires lower temperatures of no higher than 30-70 °C depending
on the strain used and the surrounding pressure. However, excessive
production of CO resulting from the feedstock, which results in reducing
the bacterial activity, the need to the improvement of microorganisms, in
order to improve their concentration in the bioreactor, and issues arising
during gas to liquid mass transfer are all challenges should be addressed
prior to the commercialization of the process of biological water gas shift
reactions (Alfano and Cavazza, 2018).

CO + H20 < CO2z + Hz, Ho298 < 0 k] /mol

Nevertheless, despite their sustainability and environmentally-friendly
nature, biological hydrogen technologies currently have lower hydrogen
yields and conversion efficiencies compared to thermochemical and
electrochemical processes. This is mainly due to inherent limitations of the
biological systems used (Lepage, et al, 2021). Additionally, these
technologies can only handle a limited range of biomass materials such as
sludge, agricultural and household wastes (Cohen, et al, 2022).
Furthermore, the scaling up and optimization of biological hydrogen
production technologies remain challenging, as they are relatively new
and lack advancements in genetic engineering and synthetic biology
(Ferraren-De et al., 2021; Zhang et al,, 2024).

2.2 Hydrogen Via Photo-Catalytic Technology

In addition to biological methods of hydrogen production discussed
earlier, hydrogen can also be produced through photo-catalytic
technology. This process involves using water or other substances, such as
waste biomass and renewable organic waste, under the influence of light
to produce hydrogen using semiconductor photo-catalysts (Ishaq et al.,
2021; Selvi and Sagadevan, 2022; Shi et al,, 2023). The most commonly
used photo-catalytic technology for hydrogen generation is the direct
splitting of water into hydrogen and oxygen, which will be further
discussed in this review. The light source can be natural sunlight or

artificial light, which initiates the photo-catalytic reaction by exciting the
photo-catalyst (Fan and Tahir, 2022). The choice of photo-catalyst is
crucial as it significantly impacts the effectiveness of the photo-catalytic
process (Qutub, et al.,, 2022).

Among the commonly used photo-catalysts for hydrogen production via
water splitting include a variety of metal oxides semiconductors such as
CdS (Qutub, et al., 2022), TiO2 nanoparticles (Qutub, et al., 2022; Selvi and
Sagadevan, 2022), SnOz, Fez03, ZnO, Ce0Oz, ZrOz, W03, V20s (Selvi and
Sagadevan, 2022) and V20s nanorods (Jayaraj et al.,, 2018), etc., to name a
few. Among these, TiO; nanoparticles has been reported as the most
promising one due to its complex structure, high surface area, high activity
and content of noble metals (Chiarello and Selli, 2010). A photo-catalyst
with a is a material that converts light energy into chemical energy by
absorbing photons. Remarkable stability, a suitable band-gap energy, low
level of toxicity (Suligoj, et al., 2022), advantageous electronic structure,
biocompatibility, capacity to produce charge carriers when exposed to
sufficient light energy, charge transport properties and excited lifetimes of
these aforementioned metal oxides have rendered them suitable for use
as photo-catalysts (Selvi and Sagadevan, 2022). Furthermore, the material
of a photo-catalyst, is synthesized and, depending on the application, can
be tailored to a suitable geometry, e.g., nanoparticles, thin films or
immobilized on a support material. Also, in order to enhance, reaction
kinetics, light absorption and charge separation by a photo-catalyst, its
surface chemistry can be altered (Suligoj, et al., 2022).

A standard semiconductor photo-catalytic process for hydrogen
production is schematically shown in Figure (2). A photo-catalytic process
advances by placing the selected photo-catalyst in an open pond or a
closed system photo-reactor, e.g., micro-photo-reactors or LED-based
packed bed photo-reactors, etc., in reference to application and available
process design. In both scenarios, the photo-reactor should promote light
absorption and mass transfer while prevent back-reactions of hydrogen
and oxygen (Zhang, et al., 2024). Then, water is added to the photo-reactor
and the system is illuminated with a source light, which as mentioned
earlier, can be either the natural sunlight or an artificial light. The light
works to initiate the photo-catalytic reaction as it excites the photo-
catalyst to create pairs of electron-holes. Once these electrons are
produced, they are used to convert (reduce) water into gaseous hydrogen
at the photo-catalyst surface, while the holes created in the process are
responsible for oxidizing water to produce oxygen (Fan, and Tahir, 2022).
The hydrogen and oxygen gases that are produced are then separated
from each other and from the liquid phase. The hydrogen that is collected
is subsequently purified, compressed or liquefied in order to be stored or
transported, as required (Zhang, etal., 2024).
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Figure 2: A Standard Semiconductor Photo-catalytic Process for Hydrogen Production (Li et al., 2016).

Li et al,, found that photo-catalysts in various systems exhibit comparable
processes for photo-catalytic hydrogen production. These processes
typically involve light absorption, separation of charges, migration and
transportation of charges, utilization of charges, self-corrosion caused by
charges and surface back reaction (Li, et al.,, 2016). Specific removal rate
of pollutants, apparent reaction rate constant, space time yield, electrical
energy consumption and photo-catalytic space time yield are all important
factors for a viable photo-catalytic process. Optimization of a photo-
catalytic process includes considering parameters such as hydrogen
peroxide, pH, temperature, UV light intensity, photo-catalyst load,
dissolved oxygen, dissolved oxygen, air flow rate, type and concentration
of pollutant, flow rate, ozonation and irradiation time. In this regard,
attention should also be paid for the band-gap energy of photo-catalyst,
pollutant absorption wavelength and wavelength of light source. In terms
of the design of photo-reactors, although generally micro-photo-reactors
may have the highest efficiency, LED-based packed bed photo-reactors
show better performance when throughput is taken into consideration,
thanks to their numerous interconnected micro-channel pockets.
Furthermore, the design of a highly efficient photo-catalyst, in terms of its
bulk and surface properties, as well as its electronic structure, requires a
comprehensive consideration and optimization of thermodynamics and
kinetics of light harvesting, charge separation, charge migration charge
transport and charge utilization, self-corrosion by charges and surface
back reaction. This is essential for a higher overall efficiency of a photo-
catalytic process for hydrogen production (Li, et al,, 2016). Furthermore,
in order to achieve an optimal design for a photo-catalytic reactor, it is
essential to balance two key parameters including technical feasibility and
economic viability. Technical feasibility encompasses factors such as high
throughput and performance, specifically in terms of mass transfer. On the
other hand, economic viability involves considerations such as energy
efficiency, particularly in relation to photon transfer, as well as overall cost
(Sundar and Kanmani, 2020).

While water splitting through photo-catalysis for hydrogen production
has shown promise as a sustainable technology, recent advancements in
photo-catalytic technologies have focused on developing improved photo-
catalysts using novel materials, nanostructures and hybrid systems to
further enhance the overall efficiency and performance. Research is
currently underway to enhance light absorption, charge separation and
reaction kinetics through the use of narrow band-gap semiconductors,
doped materials and ternary or quaternary compounds (Zhang et al,
2023). Additionally, various nanostructured photo-catalysts such as
nanowires, nanorods and quantum dots have been synthesized to improve
light absorption, charge transport and overall photo-catalytic efficiency
(Guo, et al, 2022). Hybrid photo-catalysts, which combine different
materials such as organic-inorganic or semiconductor-metals, have also
been developed to enhance efficiency and stability in photo-catalysis
(Zhou, et al.,, 2022). These hybrid systems take advantage of synergistic
effects between materials, leading to enhanced charge separation and
reduced recombination. Furthermore, tandem or Z-scheme photo-
catalytic systems have also been developed by pairing two or more
different photo-catalysts with compatible band-gap alignments to utilize a
broader range of the solar spectrum and minimize charge recombination,
ultimately enhancing the overall efficiency of solar-to-hydrogen
conversion (Ayodhya, 2023; Zhang et al., 2024).

In summary, the process of producing hydrogen through photo-catalysis

is an eco-friendly and sustainable method that uses sunlight and water to
produce hydrogen while minimizing greenhouse gas emissions. This
technique is crucial in the renewable energy sector as it harnesses solar
energy to produce clean hydrogen (Hassan, et al.,, 2023). The generated
hydrogen can be utilized for storing solar energy for future use, supporting
grid stability and managing energy efficiently (Zhang, et al, 2024).
Nevertheless, the efficiency of photo-catalytic hydrogen production is
lower compared to other methods such as steam methane reforming of
thermochemical technology or electrochemical electrolysis of water (Oh,
etal,, 2022). Also, some photo-catalytic materials are susceptible to photo-
corrosion or deactivation, leading to reduced effectiveness and the need
for frequent replacement or regeneration (Vikrant, et al, 2019).
Furthermore, the reliance on sunlight for photo-catalytic hydrogen
production limits continuous generation due to the intermittent nature of
sunlight (Rahman, et al., 2022). Moreover, there is a need for significant
advancements in the design of photo-reactors, light capture systems and
overall performance of photo-catalytic processes to enhance their
efficiency (Zhang, et al.,, 2024).

3. CONCLUSIONS

Some of the technologies for hydrogen production that have been
examined include biological and photo-catalytic methods. Biological
technologies include dark fermentation and photo-fermentation with bio-
electrochemical processes, bio-catalyzed electrolysis and biological water
gas shift reactions. Biological water gas shift reactions are preferred over
thermochemical water gas shift reactions due to their lower temperature
requirements, typically ranging from 30-70 °C depending on the strain
used and surrounding pressure. However, biological hydrogen
technologies generally have lower yields and conversion efficiencies
compared to thermochemical and electrochemical processes, mainly due
to inherent limitations of the biological systems used. Scaling-up,
optimization and advancements in genetic engineering and synthetic
biology are needed to address these challenges. Similarly, photo-catalytic
technology for hydrogen production also faces issues with lower yields
and conversion efficiencies compared to methods like steam methane
reforming thermochemical technology and electrochemical electrolysis.
Additionally, the reliance on sunlight for photo-catalytic hydrogen
production adds complexity to the process. Significant improvements in
photo-reactor designs, light capture systems and overall performance are
necessary to enhance efficiency. Despite these challenges, nevertheless,
both biological and photo-catalytic technologies, are environmentally-
friendly and sustainable, with minimal greenhouse gas emissions.
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